If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5.5x-20=0
a = 2; b = 5.5; c = -20;
Δ = b2-4ac
Δ = 5.52-4·2·(-20)
Δ = 190.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.5)-\sqrt{190.25}}{2*2}=\frac{-5.5-\sqrt{190.25}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.5)+\sqrt{190.25}}{2*2}=\frac{-5.5+\sqrt{190.25}}{4} $
| (x^2+3x+10)=0 | | x(x^2+3x+10)=0 | | -35z^2+29z-6=0 | | X^3+3x^2+10x=0 | | 3(2x-5)=4x+2x+8 | | 7/10y=49/100 | | x=12/35Y | | 7(u+4)=35 | | X+(2x)=27 | | 8/9x=24=x | | -5x/2=x-6 | | 7/10y=49/100=y | | 7x=2-19 | | (x-5)²=81 | | -7x^2+14x+21=0 | | (5x-1)+(5x-19)=180 | | x+2=0=-2 | | -7x+12=-13x+12 | | 0,5x+1=0=-2 | | -5x-1=-7x+1 | | -x+3=-8x+24 | | -x+2=0=-2 | | x+(0,5x)=69 | | -3x-3=-6x-6 | | 12x+82=-6x-2 | | -5x-2=-3x+2 | | -3x+10=-x-8 | | -4x+8=-2x+1 | | 8x=x=0 | | -5x-3=-10x+27 | | x+(0,5*x)=69 | | -2x+7=-5x+13 |